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Abstract In this paper, a new straightforward approach based on a combination
of Adomian decomposition method and Green’s function for solving second-order
Neumann boundary value problems is introduced. The proposed technique depends
upon decomposing the domain of the problem into two sub-domains and constructing
Green’s function before establishing the recursive scheme for the solution compo-
nents. The proposed method provides a direct recursive scheme for obtaining the
series solution. Five illustrative examples are examined to demonstrate the accuracy,
applicability, and generality of the proposed approach.

Keywords Neumann boundary value problems · Adomian decomposition method ·
Green’s function · Approximations

1 Introduction

Many problems in science, technology, and engineering are formulated in boundary
value problems, such as diffusion, heat flow problems, deflection in cables, chemi-
cal reaction, and heat and mass transfer within porous catalyst particle [1]. There are
several types of boundary value problems (BVPs) depending on the boundary condi-
tions usually given by Dirichlet boundary conditions, Neumann boundary conditions
or mixed boundary conditions. The Neumann BC are usually the most physically
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reasonable choice. Such BVPs arise in chemical engineering, underground water flow
and population dynamics, and other field of physics and mathematical chemistry [2,3].
Since it is usually impossible to obtain the closed-form solutions to BVPs met in prac-
tice, so these problems must be solved by various approximate and numerical methods.

The aim of this paper is to introduce an efficient approach for solving second-
order differential equation with Neumann boundary conditions. Consider the following
boundary value problems

y′′(x) = f (x, y(x), y′(x)), x ∈ [a, b], (1.1)

subject to the Neumann boundary conditions

y′(a) = α, y′(b) = β, (1.2)

where a and b are any finite real constants and f is continuous on the set D =
{(x, y, y′) : [a, b] × R

2}.
There are several analytical and numerical methods that are used in the literature

to handle the BVPs [4–7]. The finite difference method [4], finite element method [8],
the shooting method, collocation method [5], the variational iteration method [9,10]
and many others are examples of these methods. These methods usually suffer from
the huge size of calculations.

The ADM is a powerful technique for solving functional equations, linear and
nonlinear. The ADM allows us to solve both nonlinear initial value problems (IVPs)
and boundary value problems (BVPs) without unphysical restrictive assumptions such
as linearization, discretization, perturbation and guessing the initial term or a set of
basis functions. Many authors [11–22] have shown interest to study of the ADM for
different scientific models. The ADM provides a systematic approach for approximate
analytic solutions of nonlinear and stochastic operator equations, including differential
and integral equations.

It should be noted that in the literature very little attention has been devoted for
applying the ADM to boundary value problems with Neumann boundary conditions.
In this paper, we propose a practical method that can be efficiently used to handle
Neumann BVPs. The method combines the Adomian method and the Green’s function
method to present a reliable technique that gives higher accuracy level. It also depends
on decomposing the domain of the problem into two sub-domains as will be seen later.

1.1 Standard ADM

According to the standard ADM the problem (1.1) is written as

Ly(x) = N y(x), x ∈ [a, b], (1.3)

where L = d2

dx2 and N y(x) = f (x, y(x), y′(x)), and the inverse operator of L−1[·] :=
x∫

a

x∫

a
[·]dxdx is used to Eq. (1.3) resulting in
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y(x) = c1 + (x − a)c2 + L−1 N y(x), (1.4)

where c1 and c2 are unknown parameter to be determined. The idea of ADM is based
on decomposing y(x) and the nonlinear term N y(x) by an infinite series as

y(x) =
∞∑

j=0

y j (x), N y(x) =
∞∑

j=0

A j , (1.5)

where A j are Adomian’s polynomials which can be obtained by using the formula
given in [17] as

An = 1

n!
dn

dλn

[

N

( ∞∑

k=0

ykλ
k
)]

λ=0
, n = 0, 1, 2, . . . . (1.6)

Substituting (1.5) in (1.4), yields the following recursive scheme

y0 = c1 + (x − a)c2, y j = L−1[A j−1], j = 1, 2 . . . . (1.7)

The approximate solution is defined as φn(x, c1, c2) = ∑n
j=0 y j (x). Note that the

approximate solution φn depends on the unknown parameters c1 and c2. To evaluate
these parameters, we begin with φn = c1 + (x − a)c2 + L−1[∑n−1

j=1 A j−1]. Imposing

the boundary conditions (1.2), we have φ′
n(a) := c2 + [

L−1[∑n−1
j=1 A j−1]

]′
x=a =

α, φ′
n(b) := c2 + [

L−1[∑n−1
j=1 A j−1]

]′
x=b = β. Note that by solving these with

respect to c2, its value can be obtained, while the parameter c1 remains unknown.
Hence we can not proceed with the standard ADM. In the next section, we introduce
a modification of the ADM which combines with Green’s function to overcome the
difficulties occurring in the standard ADM for solving BVPs (1.1) and (1.2).

2 Two-stage ADM

In order to solve BVPs (1.1) and (1.2) by the ADM, we divide original problem into
two subproblems. To do so, we first decompose the domain of the problem [a, b] into
two sub-domains [a, c] ∪ [c, b], set y(c) = η, c ∈ (a, b), where η is an unknown
constant.

For [a, c]: We consider the following boundary value problem

y′′(x) = f (x, y(x), y′(x)), y′(a) = α, y(c) = η. (2.1)

Integrating the problem (2.1) w.r.t. x from a to x and using y′(a) = α, we obtain the
Volterra integro-differential equation

y′(x) = α +
x∫

a

f (ξ, y(ξ), y′(ξ))dξ. (2.2)
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Again integrating above equation w.r.t. x from a to x and changing the order of
integration we get the Volterra integral equation

y(x) = y(a)+ α(x − a)+
x∫

a

(x − ξ) f (ξ, y(ξ), y′(ξ))dξ. (2.3)

Using other boundary condition y(c) = η, the unknown constant y(a) is identified as

y(a) = η − α(c − a)−
c∫

a

(c − ξ) f (ξ, y(ξ), y′(ξ))dξ.

Substituting y(a) in Eq. (2.3), we obtain the Fredholm–Volterra integral equation

y(x) = η + α(x − c)−
c∫

a

(c − ξ) f (ξ, y(ξ), y′(ξ))dξ

+
x∫

a

(x − ξ) f (ξ, y(ξ), y′(ξ))dξ.

Splitting the first integral into two parts from a to x and x to c, we get

y(x) = η + α(x − c)+
x∫

a

(ξ − c) f (ξ, y(ξ), y′(ξ))dξ

+
c∫

x

(ξ − c) f (ξ, y(ξ), y′(ξ))dξ

+
x∫

a

(x − ξ) f (ξ, y(ξ), y′(ξ))dξ.

Combining the first and last integrals, we have

y(x) = η + α(x − c)+
x∫

a

(x − c) f (ξ, y(ξ), y′(ξ))dξ

+
c∫

x

(ξ − c) f (ξ, y(ξ), y′(ξ))dξ.
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Thus we obtain the Fredholm integral equation as

y(x) = η + α(x − c)+
c∫

a

G(x, ξ) f (ξ, y(ξ), y′(ξ))dξ, (2.4)

where the Green’s function G(x, ξ) is

G(x, ξ) =
{
(ξ − c), a ≤ x ≤ ξ,

(x − c), ξ ≤ x ≤ c.
(2.5)

Substituting (1.5) into (2.4), we obtain

∞∑

j=0

y j (x) = η + α(x − c)+
c∫

a

G(x, ξ)

[ ∞∑

j=0

A j

]

dξ. (2.6)

Comparing both sides of (2.6), we have

y0(x, η) = η + α(x − c),

y j (x, η) =
c∫

a
G(x, ξ)A j−1dξ, j = 1, 2 . . .

⎫
⎬

⎭
(2.7)

and the modified recursive scheme is defined as

y0(x, η) = η,

y1(x, η) = α(x − c)+
c∫

a
G(x, ξ)A0dξ,

y j (x, η) =
c∫

a
G(x, ξ)A j−1dξ, j = 2, 3 . . .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.8)

which leads to a complete determination of the components y j (x), and the n-terms
series solution of the sub-problem (2.1) is given by

ψ(I )n (x) =
n∑

j=0

y j (x, η). (2.9)

For [c, b]: Let us consider the following boundary value problem

y′′(x) = f (ξ, y(x), y′(x)), y(c) = η, y′(b) = β, (2.10)

Integrating (2.10) w.r.t x from c to x , we get

y′(x) = y′(c)+
x∫

c

f (ξ, y(ξ), y′(ξ))dξ. (2.11)
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Integrating (2.11) from c to x and using boundary condition y(c) = η and changing
the order of integration we have

y(x) = η + y′(c)(x − c)+
x∫

c

(x − ξ) f (ξ, y(ξ), y′(ξ))dξ. (2.12)

To eliminate the unknown constant y′(c) from (2.12), we impose other boundary
condition y′(b) = β in equation (2.11) and yields

y′(c) = β −
b∫

c

f (ξ, y(ξ), y′(ξ))dξ. (2.13)

Combining equations (2.12) and (2.13), we get

y(x) = η + β(x − c)+
b∫

c

(c − x) f (ξ, y(ξ), y′(ξ))dξ

+
x∫

c

(x − ξ) f (ξ, y(ξ), y′(ξ))dξ

= η + β(x − c)+
x∫

c

(c − ξ) f (ξ, y(ξ), y′(ξ))dξ

+
b∫

x

(c − x) f (ξ, y(ξ), y′(ξ))dξ.

Hence, we have the Fredholm integral equation as

y(x) = η + β(x − c)+
b∫

c

G(x, ξ) f (ξ, y(ξ), y′(ξ))dξ, (2.14)

where G(x, ξ) is given by

G(x, ξ) =
{
(c − x), c ≤ x ≤ ξ,

(c − ξ), ξ ≤ x ≤ b.
(2.15)

By substituting (1.5) into (2.14), we obtain

∞∑

j=0

y j (x) = η + β(x − c)+
b∫

c

G(x, ξ)

[ ∞∑

j=0

A j

]

dξ. (2.16)
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Upon comparing both sides of (2.16), we have the following recursion scheme

y0(x, η) = η + β(x − c),

y j (x, η) =
b∫

c
G(x, ξ)A j−1dξ, j = 1, 2 . . .

⎫
⎬

⎭
(2.17)

and the modified recursive scheme is defined as

y0(x) = η,

y1(x) = β(x − c)+
b∫

c
G(x, ξ)A0dξ,

y j (x) =
b∫

c
G(x, ξ)A j−1dξ, j = 2, 3 . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.18)

which gives a complete determination of the components y j (x), we denote the n-terms
approximant of the series solutions

ψ(I I )
n (x) =

n∑

j=0

y j (x, η). (2.19)

In order to determine η form equations (2.11) and (2.19), we use the continuity
condition for the flux

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=c

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=c

= 0, n = 1, 2, . . . (2.20)

which leads to a sequence of equations. By solving these equations, we can obtain
approximate value of η. Then the approximate series solution of original BVPs (1.1)
and (1.2) is defined as

ψn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ(I )n (x, ηn) :=
n∑

j=0

y j (x, ηn), a ≤ x < c,

ψ(I I )
n (x, ηn) :=

n∑

j=0

y j (x, ηn), c ≤ x ≤ b,

(2.21)

where ηn, n = 1, 2, 3, . . . are approximate values of η.

3 Convergence analysis

Note that the convergence of the ADM for differential and integral equations have
already been discussed in [12,23]. In this section we follow the approach discussed
[12] for the convergence of the recursive schemes (2.7) or (2.8) and (2.17) or (2.18).
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For [a, c]: Let E = C1[a, c] be a Banach space with a norm defined by

‖y‖∞ = max
x∈[a,c](l1|y(x)| + l2|y′(x)|), y ∈ E, (3.1)

where l1 and l2 are Lipschitz constants defined by (3.4). Rewrite integral equation
(2.4) in an operator form

y(x) = T y(x), (3.2)

where T : E → E is defined as

T y(x) = η + α(x − c)+
c∫

a

G(x, ξ) f (ξ, y(ξ), y′(ξ))dξ. (3.3)

Theorem 3.1 Let E be Banach space with norm given by (3.1). Assume that
f (x, y, y′) satisfies Lipschitz condition, i.e., there exists constants l1 and l2 such that
for all (x, y, y′), (x, z, z′) ∈ D,

| f (x, y, y′)− f (x, z, z′)| ≤ l1|y − z| + l2|(y′ − z′)|. (3.4)

If δ := (l1m1 + l1m2) < 1, then the Eq. (3.2) has a unique solution in E.

Proof For any y, y∗ ∈ E, we have

|T y(x)− T y∗(x)| =
∣
∣
∣
∣

c∫

a

G(x, ξ)
[

f (ξ, y(ξ), y′(ξ))− f (ξ, y∗(ξ), y′∗(ξ))
]

dξ

∣
∣
∣
∣

≤
c∫

a

|G(x, ξ)| ∣∣ f (ξ, y(ξ), y′(ξ))− f (ξ, y′(ξ), y′∗(ξ))
∣
∣ dξ

≤ m1 max
x∈[a,c]

[
l1|y(ξ)− y(ξ)| + l2|y′(ξ)− y′∗(ξ)|]

= m1‖y − y∗‖∞, (3.5)

where m1 :=
c∫

a
|G(x, ξ)|dξ . Similarly, consider

∣
∣
∣
∣

d

dx

(
T y(x)− T y∗(x)

)
∣
∣
∣
∣=

∣
∣
∣
∣

c∫

a

Gx (x, ξ)
[

f (ξ, y(ξ), y′(ξ))− f (ξ, y∗(ξ), y′∗(ξ))
]

dξ

∣
∣
∣
∣

≤
c∫

a

|Gx (x, ξ)|
∣
∣ f (ξ, y(ξ), y′(ξ))− f (ξ, y′(ξ), y′∗(ξ))

∣
∣ dξ
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≤ m2 max
x∈[a,c](l1|y(ξ)− y(ξ)| + l2|y′(ξ)− y′∗(ξ)|)

= m2‖y − y∗‖∞, (3.6)

where m2 :=
c∫

a
|Gx (x, ξ)|dξ . Combining the estimates (3.5) and (3.6), we obtain

‖T y − T y∗‖∞ ≤ (l1m1 + l1m2)‖y − y∗‖∞ = δ‖y − y∗‖∞, (3.7)

where δ = (l1m1 + l1m2). If δ < 1, then T : E → E is contraction mapping and
hence by the Banach contraction mapping theorem, the Eq. (3.2) has a unique solution
in E. 
�
Theorem 3.2 Assume that all the conditions of Theorem 3.1 hold. Let y0, y1, y2, . . . ,

be the solution components obtained by the recursive schemes (2.7) or (2.8), and let
ψn = ∑n

j=0 y j be the n-terms series solution defined by (2.9). Then ψn converges to
the exact solution y of the operator Eq. (3.2) whenever δ < 1 and ‖y1‖ < ∞.

Proof Using (2.7) or (2.8) and (2.9), we have

ψn = y0 +
n∑

j=1

y j = η + α(x − c)+
n∑

j=1

[ 1∫

0

G(x, ξ)A j−1dξ

]

= η + α(x − c)+
1∫

0

G(x, ξ)q(ξ)
n−1∑

j=0

A j dξ. (3.8)

For all n,m ∈ N, with n > m, consider

‖ψn − ψm‖ = max
a≤x≤c

∣
∣
∣
∣

c∫

a

G(x, ξ)

[ n−1∑

j=0

A j −
m−1∑

j=0

A j

]

dξ

∣
∣
∣
∣. (3.9)

Using the relation
∑n−1

j=0 A j ≤ f (x, ψn−1, ψ
′
n−1) in above Eq. ([24] pp. 945), we

obtain

‖ψn − ψm‖ ≤ max
0≤x≤1

∣
∣
∣
∣

c∫

a

G(x, ξ)( f (ξ, ψn−1, ψ
′
n−1)− f (ξ, ψm−1, ψ

′
m−1))dξ

∣
∣
∣
∣.

(3.10)

Hence for any n ∈ N and following the steps of Theorem 3.1, we can obtain the
following relation

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖.
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Thus we have

‖ψn+1 − ψn‖ ≤ δ‖ψn − ψn−1‖ ≤ δ2‖ψn−1 − ψn−2‖ ≤ . . . ≤ δn‖ψ1 − ψ0‖.

For any n,m ∈ N, with n > m, consider

‖ψn − ψm‖ ≤ ‖ψn − ψn−1‖ + ‖ψn−1 − ψn−2‖ + · · · + ‖ψm+1 − ψm‖
≤ [δn−1 + δn−2 + · · · + δm]‖ψ1 − ψ0‖
= δm[1 + δ + δ2 + · · · + δn−m−1]‖ψ1 − ψ0‖
= δm

(
1 − δn−m

1 − δ

)

‖y1‖.

Since δ < 1 so, (1 − δn−m) < 1 and ‖y1‖ < ∞, it follows that

‖ψn − ψm‖ ≤ δm

1 − δ
‖y1‖ → 0, as m → ∞.

This implies that there exits a ψ such that limn→∞ ψn = ψ . Since, we have y =∑∞
j=0 y j = limn→∞ ψn , that is, y = ψ which is the exact solution of (3.2). 
�

For [c, b]: Let E = C1[c, b] be a Banach space with a norm defined by

‖y‖∞ = max
x∈[c,b](l1|y(x)| + l2|y′(x)|), y ∈ E. (3.11)

Rewriting integral Eq. (2.14) in an operator form

y(x) = T y(x), (3.12)

where T : E → E is defined as

T y(x) = η + β(x − c)+
b∫

c

G(x, ξ) f (ξ, y(ξ), y′(ξ))dξ, (3.13)

Note 3.1 As we discussed the convergence analysis for the recursive schemes (2.7)
or (2.8), by following similar steps we can also do for the recursive schemes (2.17) or
(2.18).

4 Numerical results

We consider five illustrative examples to demonstrate the accuracy and efficiency of
the ADM. All symbolic and numerical computations are performed by using ‘Math-
ematica’ 8.0 software package. Numerical results obtained by the proposed method
are compared with the exact and known results.
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Example 4.1 Consider the following second-order BVPs with Neumann boundary
conditions [25]

y′′(x) = −(y(x)+ x) x ∈ [0, 1],
y′(0) = −1 + cosec(1), y′(1) = −1 + cot(1),

}

(4.1)

where the exact solution is y(x) = −x + cosec(1) sin(x).

To get approximate solution of above example, we apply two-stage ADM with
Green’s function. To apply the proposed method, we first decompose the domain of
solution [0, 1] into two sub-domains [0, 0.5] and [0.5, 1]. Suppose y(0.5) = η, where
η is an unknown constant. According to the proposed method, we solve the following
two sub-BVPs

y′′(x)=−(y(x)+ x), y′(0)=−1 + cosec(1), y(0.5)=η, x ∈[0, 0.5], (4.2)

and

y′′(x)=−(y(x)+ x), y(0.5) = η, y′(1) = −1 + cot(1), x ∈ [0.5, 1]. (4.3)

For [0, 0.5]: According to the recursive scheme (2.8) with a = 0, c = 0.5 and
α = −1 + cosec(1), we transform sub-problem (4.2) into the following recursive
scheme as

y0(x) = η,

y1(x) = (−1 + cosec(1))(x − 0.5)+
0.5∫

0

G(x, ξ)(−y0(ξ)− ξ)dξ,

y j (x) =
0.5∫

0

G(x, ξ)(−y j−1(ξ))dξ, j = 2, 3, . . .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

where the Green’s function G(x, ξ) is given by

G(x, ξ) =
{
(ξ − 0.5), 0 ≤ x ≤ ξ,

(x − 0.5), ξ ≤ x ≤ 0.5.
(4.5)

Using (4.4) and (4.5), we obtain the solution components

y0(x) = η,

y1(x) = 25

48
− x − x3

6
+ η

(
1

8
− x2

2

)

− cosec(1)

(
1

2
+ x

)

,

y2(x) = 169

3840
− 25x2

96
+ x3

6
+ x5

120
+ η

(
5

384
− x2

16
+ x4

24

)
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− cosec(1)

(
1

24
+ x2

4
− x3

6

)

,

...

Hence, the n-terms series solution can obtained as ψ(I )n (x, η) = ∑n
j=0 y j .

For [0.5, 1]: According to the recursive scheme (2.18) with c = 0.5, b = 1 and
β = −1 + cot(1), we convert sub-problem (4.3) into the following recursive scheme

y0(x) = η,

y1(x) = (−1 + cot(1))(x − 0.5)+
1∫

0.5
G(x, ξ)(−y0(ξ)− ξ)dξ,

y j (x) =
1∫

0.5
G(x, ξ)(−y j−1(ξ))dξ, j = 2, 3, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.6)

where G(x, ξ) is given by

G(x, ξ) =
{
(0.5 − x), 0.5 ≤ x ≤ ξ,

(0.5 − ξ), ξ ≤ x ≤ 1.
(4.7)

By using (4.6) and (4.7), we obtain the solution components

y0(x) = η,

y1(x) = 13

48
− x

2
− x3

6
− η

(
3

8
− x + x2

2

)

− cot(1)

(
1

2
− x

)

,

y2(x) = 43

1280
− x

48
− 13x2

96
+ x3

12
+ x5

120
− η

(
1

128
+ x

24
− 3x2

16
+ x3

6
− x4

24

)

− cot(1)

(
1

24
− 1

4
x2 + 1

6
x3

)

,

...

Hence, the n-terms series solution can obtained as ψ(I I )
n (x, η) = ∑n

j=0 y j . To deter-
mine unknown constant η, we use the continuity condition for the flux defined as
(2.20)

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=0.5

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=0.5

= 0, n = 1, 2, . . . (4.8)

Solving above equation numerically, we obtain a sequence of approximate values for
η. The numerical values of η are listed in Table 1. From Table 1, we observe that the
approximate value of η approaches the value 0.0697469.... Note that the actual value
of η is y( 1

2 ) = − 1
2 + cosec(1) sin( 1

2 ) = 0.06974696....
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Table 1 Approximate value of η for n = 2, 3, 4 . . . , 8.

n 2 3 4 5 6 7 8

ηn 0.0673141 0.0694995 0.0697219 0.0697444 0.0697467 0.0697469 0.0697470

Table 2 Maximum absolute error of Example 4.1

n 2 3 4 5 6 7 8

En 2.446E−03 2.486E−04 2.522E−05 2.556E−06 2.589E−07 2.624E−08 2.656E−09

Fig. 1 Exact y and approximate ψn , n = 2, 3 of Example 4.1

In view of Eq. (2.20), we can obtain approximate series solution of the problem
(4.1) as

ψn(x) =
{
ψ
(I )
n (x, ηn), 0 ≤ x < 0.5,
ψ
(I I )
n (x, ηn), 0.5 ≤ x ≤ 1,

(4.9)

where ηn is an approximate value of η. In order to show the accuracy and efficiency
of the proposed method, we define maximum absolute error as En = |ψn(x) −
y(x)|, n = 1, 2, . . ., where y(x) is the exact solution and ψn(x) is n-terms series
solution defined by equation (2.21). The maximum absolute error En, n = 2, 3, . . . 8
are listed in Table 2. Moreover, we plot the exact y(x) and the approximate solutions
ψ2, ψ3 in Figure 1, where ψ3 and the exact solution overlap each others.

Example 4.2 Consider the following second-order nonlinear BVPs with Neumann
boundary conditions
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y′′(x) = −e−2y(x), x ∈ [0, 1],
y′(0) = 1, y′(1) = 1

2
,

⎫
⎬

⎭
(4.10)

where the exact solution is y(x) = ln(1 + x).

As we did in the last example, the domain of solution [0, 1] is decomposed into two
sub-domains [0, 0.5] and [0.5, 1] and setting y(0.5) = η. We solve the following two
nonlinear sub-BVPs

y′′(x) = −e−2y(x), y′(0) = 1, y(0.5) = η, x ∈ [0, 0.5], (4.11)

and

y′′(x) = −e−2y(x), y(0.5) = η, y′(1) = 1

2
, x ∈ [0.5, 1]. (4.12)

For [0, 0.5]: According to the recursive scheme (2.8) with a = 0, c = 0.5, and
α = 1, we transform the sub-problem (4.11) into the following recursive scheme as

y0(x) = η,

y1(x) = 1(x − 0.5)+
0.5∫

0
G(x, ξ)A0dξ,

y j (x) =
0.5∫

0
G(x, ξ)A j−1dξ, j = 2, 3, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.13)

where G(x, ξ) is same as in (4.5). We use the Duan’s algorithm [26] for obtaining the
Adomian’s polynomial for f (y) = −e−2y given as

A0 = −e−2y0 , A1 = 2e−2y0 y1, A2 = 2e−2y0(−y2
1 + y2), . . . (4.14)

Using (4.13) and (4.14), the solution components are computed as

y0(x) = η,

y1(x) = 1

8

(
−4 + 8x + e−2η

(
1 − 4x2

))
,

y2(x) = 1

192
e−4η

(
−5 + 24x2 − 16x4 + 16e2η

(
1 − 6x2 + 4x3

))
,

...

Thus, the n-terms series solution is obtained as ψ(I )n (x, η) = ∑n
j=0 y j .

For [0.5, 1]: According to the recursive scheme (2.18) with c = 0.5, b = 1 and
β = 1

2 , we convert sub-problem (4.12) into the following recursive scheme as
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Table 3 Approximate value of η for n = 2, 3, 4 . . . , 8.

n 2 3 4 5 6 7 8

ηn 0.3687141 0.4134221 0.4049372 0.4063283 0.4050268 0.4055677 0.4054158

Table 4 Maximum absolute error of Example 4.2

n 2 3 4 5 6 7 8

En 4.052E−02 9.233E−03 1.696E−03 9.613E−04 5.123E−04 1.389E−04 6.432E−05

y0(x) = η,

y1(x) = 1
2 (x − 0.5)+

1∫

0.5
G(x, ξ)A0dξ,

y j (x) =
1∫

0.5
G(x, ξ)A j−1dξ, j = 2, 3, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.15)

where G(x, ξ) is same as in (4.7). By using (4.15) and (4.14), the solution components
are computed as

y0(x) = η,

y1(x) = 1

8
e−2η

(
3 + 2e2η − 2x

)
(−1 + 2x),

y2(x) = − 1

192
e−4η(−1 + 2x)

(
3 + 22x − 28x2 + 8x3 + e2η

(
8 + 16x − 16x2

))
,

...

Thus, the n-terms series solution is obtained as ψ(I I )
n (x, η) = ∑n

j=0 y j . In order to
determine value of η, we again use the continuity condition for the flux defined by
(2.20), i.e.,

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=0.5

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=0.5

= 0, n = 1, 2, . . . (4.16)

After solving above Eq. (4.16) numerically, we get a sequence of approximate values
for η. From Table 3 we can observe that the approximate value of η approaches to
0.4054158.... Note that the actual value of η is y( 1

2 ) = ln(1.5) = 0.4054651081081....
Table 4 shows the numerical results of the maximum absolute error En, n = 2, 3, . . . 8.
Further, we plot the exact y(x) and the approximate solutions ψn for n = 2, 3, 4 in
Fig. 2. It can be observed from the figure that ψ4 and the exact solution overlap.

Example 4.3 Consider the nonlinear oscillator second-order nonlinear BVPs with
Neumann boundary conditions [25]
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Fig. 2 Exact y and approximate ψn , n = 2, 3 of Example 4.2

y′′ + ω2 y = λym, x ∈ [0, 1],
y′(0) = 1, y′(1) = cn

(

1|1

4

)

dn

(

1|1

4

)

,

⎫
⎬

⎭
(4.17)

where m is a positive integer. This problem has the exact solution y = sn(x | 1
4 ) when

m = 3 (Duffing oscillator), λ = 1
2 and ω2 = 5

4 , where sn, cn, dn are Jacobi elliptic
functions.

As we did before, we solve the following two nonlinear sub-BVPs

y′′(x) = λym(x)− ω2 y(x), y′(0) = 1, y(0.5) = η, x ∈ [0, 0.5], (4.18)

and

y′′(x) = λym(x)− ω2 y(x), y(0.5) = η, y′(1) = cn

(

1|1

4

)

dn

(

1|1

4

)

,

x ∈ [0.5, 1]. (4.19)

For [0, 0.5]: Using the recursive scheme (2.7) with a = 0, c = 0.5 and α = 1, we
convert sub-problem (4.18) into the following recursive scheme

y0(x) = η + 1(x − 0.5),

y j (x) =
0.5∫

0
G(x, ξ)(λA j−1 − ω2 y j−1)dξ, j = 1, 2, . . .

⎫
⎬

⎭
(4.20)
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where G(x, ξ) is defied as in (4.5). The first few terms of Adomian polynomials for
f (y) = ym is obtained as

A0 = ym
0 , A1 = mym−1

0 y1, A2 = mym−1
0 y2 + 1

2
m(m − 1)ym−2

0 y2
1 , . . . (4.21)

In view of (4.20) and (4.21), the solution components are obtained as

y0(x) = η + (x − 0.5),

y1(x) = − 47

960
+ 9x2

32
− 7x3

48
− x4

16
+ x5

40
+ 17η

128
− 7x2η

16
− x3η

4
+ x4η

8
+ η2

16

− 3x2η2

8
+ x3η2

4
− η3

16
+ x2η3

4
,

...

Hence, the n-terms series solution is obtained as ψ(I )n (x, η) = ∑n
j=0 y j .

For [0.5, 1]: Applying the recursive scheme (2.17) with c = 0.5, b = 1 and β =
cn

(
1| 1

4

)
dn

(
1| 1

4

)
, the sub-problem (4.19) is converted into the following recursive

scheme

y0(x) = η + (
cn

(
1| 1

4

)
dn

(
1| 1

4

))
(x − 0.5),

y j (x) =
1∫

0.5
G(x, ξ)(λA j−1 − ω2 y j−1)dξ, j = 1, 2, . . .

⎫
⎪⎬

⎪⎭
(4.22)

where G(x, ξ) is same as in (4.7). Using (4.22) and (4.21), the solution components
are computed as

y0(x) = η +
(

cn

(

1|1

4

)

dn

(

1|1

4

))

(x − 0.5),

y1(x) = −0.026557 + 0.157602x2 − 0.099268x3 − 0.008699x4 + 0.003479x5

− 0.458259η + 1.21643xη − 0.574641x2η − 0.0671448x3η

+ 0.0335724x4η + 0.0323904η2 − 0.194342x2η2 + 0.129562x3η2

+ 0.1875η3 − 0.5xη3 + 0.25x2η3,

...

Thus, the n-terms series solution is obtained asψ(I I )
n (x, η) = ∑n

j=0 y j . To determine
the approximate values ηn for η, we apply the continuity condition for the flux, i.e.

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=0.5

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=0.5

= 0, n = 1, 2, . . . (4.23)
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Table 5 Approximate value of η for n = 2, 3, 4 . . . , 8.

n 1 2 3 4 5 6 7

ηn 0.5055120 0.4752197 0.4748384 0.4750737 0.4750902 0.4750845 0.4750830

Table 6 Maximum absolute error of Example 4.3

n 1 2 3 4 5 6 7

En 3.158E−02 6.033E−04 3.327E−04 1.585E−05 8.018E−06 1.813E−06 7.454E−08

Fig. 3 Exact y and approximate ψn , n = 1, 2 of Example 4.3

By solving Eq. (4.23), we obtain the approximate values for η. From Table 5 we can
observe that the approximate value of η approaches to 0.4750830.... Note that the
actual value of η is y( 1

2 ) = sn( 1
2 | 1

4 ) = 0.47508293602.... In Table 6, we list the
numerical results of the maximum absolute error En, n = 1, 3, . . . 7. We also plot the
exact y(x) and the approximate solutions ψn for n = 1, 2 in Fig. 3. It can be seen
from the figure that ψ2 and the exact solution overlap.

Example 4.4 Consider the nonlinear second-order nonlinear BVPs with Neumann
conditions

y′′(x) = 4x2e2y(x) − 2ey(x), x ∈ [0, 1],
y′(0) = 0, y′(1) = −2

5
.

⎫
⎬

⎭
(4.24)

Its exact solution is y(x) = ln
(

1
4+x2

)
.

We decompose the domain of solution [0, 1] into two sub-domains [0, 0.5] and
[0.5, 1], and set y(0.5) = η, where η is an unknown constant. Then we solve the
following two sub-BVPs
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y′′(x) = 4x2e2y(x) − 2ey(x), y′(0) = 0, y(0.5) = η, x ∈ [0, 0.5], (4.25)

and

y′′(x)=4x2e2y(x) − 2ey(x), y(0.5) = η, y′(1) = −2

5
, x ∈ [0.5, 1]. (4.26)

For [0, 0.5]: By using the recursive scheme (2.8) with a = 0, c = 0.5 and α = 0,
the sub-problem (4.25) is transformed into the following recursive scheme

y0(x) = η,

y1(x) = 0(x − 0.5)+
0.5∫

0
G(x, ξ)A0dξ,

y j (x) =
0.5∫

0
G(x, ξ)A j−1dξ, j = 1, 2, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.27)

where G(x, ξ) is given by (4.5). The first few terms of Adomian polynomials for
f (x, y) = 4x2e2y − 2ey are obtained as

A0 = ey0(4x2 − 2), A1 = 2ey0
(

4ey0 x2 − 1
)

y1, A2

= ey0
(

8ey0 x2
(

y2
1 + y2

)
− y2

1 − 2y2

)
, . . . (4.28)

By using (4.27) and (4.28), the solution components are computed as

y0(x) = η,

y1(x) = eη

4
− e2η

48
− eηx2 + 1

3
e2ηx4,

y2(x) = 5e2η

96
− e3η

90
+ 11e4η

16128
− e2ηx2

4
+ e3ηx2

48
+ e2ηx4

6
+ e3ηx4

6

− e4ηx4

72
− 13e3ηx6

45
+ e4ηx8

21
,

...

Hence, the n-terms series solution is obtained as ψ(I )n (x, η) = ∑n
j=0 y j .

For [0.5, 1]: Applying the recursive scheme (2.18) with c = 0.5, b = 1 and
β = −2

5 , we convert sub-problem (4.19) into the following recursive scheme

y0(x) = η,

y1(x) = (−2
5 )(x − 0.5)+

1∫

0.5
G(x, ξ)A0dξ,

y j (x) =
1∫

0.5
G(x, ξ)A j−1dξ, j = 1, 2, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.29)
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Table 7 Approximate value of η for n = 2, 3, 4 . . . , 8.

n 1 2 3 4 5 6 7

ηn −1.4369459 −1.4464431 −1.4466153 −1.4469142 −1.4469162 −1.4469190 −1.4469189

Table 8 Maximum absolute error of Example 4.4

n 1 2 3 4 5 6 7

En 7.538E−03 4.211E−04 1.983E−04 4.028E−06 1.954E−06 4.075E−08 2.662E−08

In view of (4.29) and (4.28), the solution components are computed as

y0(x) = η,

y1(x) = 1

5
− 3eη

4
+ 31e2η

48
− 2x

5
+ 2eηx − 4

3
e2ηx − eηx2 + 1

3
e2ηx4,

y2(x)= eη

30
− 403e2η

2400
+ 13e3η

48
− 23561e4η

80640
+ 1

10
e2ηx− 37

120
e3ηx+ 71

126
e4ηx− eηx2

5

+ 3

4
e2ηx2 − 31

48
e3ηx2 + 2eηx3

15
− 2

3
e2ηx3 + 4

9
e3ηx3 + 3

10
e2ηx4 − 1

2
e3ηx4

+ 31

72
e4ηx4 − 4

25
e2ηx5 + 4

5
e3ηx5 − 8

15
e4ηx5 − 13

45
e3ηx6 + 1

21
e4ηx8,

...

Thus, the n-terms series solution is obtained as ψ(I I )
n (x, η) = ∑n

j=0 y j . To evaluate
the approximate values of η, we use the continuity condition for the flux, i.e.

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=0.5

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=0.5

= 0, n = 1, 2, . . . (4.30)

Solving Eq. (4.30), we obtain approximate values for η. From Table 7 we can observe
that the approximate value of η approaches to −1.4469189.... Also, it can be noted
that the true value of η is y( 1

2 ) = ln
( 4

17

) = −1.4469189829363254.... Table 8 shows
the numerical results of the maximum absolute error En, n = 1, 2, . . . 7. Moreover,
we plot the exact y(x) and the approximate solutions ψn for n = 1, 2 in Fig. 4. It can
be observed from the figure that ψ2 and the exact solution overlap.

Example 4.5 Consider the nonlinear second-order nonlinear BVPs with Neumann
conditions

y′′(x)− y′(x) = 9x4e2y(x) + 3xey(x)(x − 2), x ∈ [0, 1],
y′(0) = 0, y′(1) = −3

7
.

⎫
⎬

⎭
(4.31)

This problem has the exact solution y(x) = ln
(

1
6+x3

)
.
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Fig. 4 Exact y and approximate ψn , n = 1, 2 solutions of Example 4.4

According to the proposed method we decompose the domain of solution [0, 1] into
two sub-domains [0, 0.5] and [0.5, 1], and setting y(0.5) = η, where η is an unknown
constant. We then solve the following two non-linear sub-BVPs

y′′(x)− y′(x) = 9x4e2y(x) + 3xey(x)(x − 2), y′(0) = 0, y(0.5) = η,

x ∈ [0, 0.5], (4.32)

and

y′′(x)− y′(x) = 9x4e2y(x) + 3xey(x)(x − 2), y(0.5) = η, y′(1) = −3

7
,

x ∈ [0.5, 1]. (4.33)

For [0, 0.5]: According to the recursive scheme (2.8) with a = 0, c = 0.5 and
α = 0, the sub-problem (4.32) is transformed into the following recursive scheme

y0(x) = η,

y1(x) = 0(x − 0.5)+
0.5∫

0
G(x, ξ)(y′

0(ξ)+ A0)dξ,

y j (x) =
0.5∫

0
G(x, ξ)(y′

j−1(ξ)+ A j−1)dξ, j = 1, 2, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.34)

where G(x, ξ) is same as in (4.5). Similarly, using the Duan’s efficient algorithm [26],
the Adomian’s polynomials for f (x, y) = 9x4e2y + 3xey(x − 2) are obtained as

A0 = 3ey0 x
(

x − 2 + 3ey0 x3
)
, A1 = 3ey0 x

(
x − 2 + 6ey0 x3

)
y1,

A2 = 3

2
ey0 x

((
x − 2 + 12ey0 x3

)
y2

1 + 2
(

x − 2 + 6ey0 x3
)

y2

)
, . . . (4.35)
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Table 9 Approximate value of η for n = 2, 3, 4 . . . , 8.

n 1 2 3 4 5 6 7

ηn −1.2380495 −1.9637606 −1.7856098 −1.8154752 −1.8117846 −1.8125546 −1.8123149

Using (4.34) and (4.35), we obtain the solution components as

y0(x) = η,

y1(x) = 7eη

64
− 3e2η

640
− eηx3 + eηx4

4
+ 3

10
e2ηx6,

...

Hence, the n-terms series solution is obtained as ψ(I )n (x, η) = ∑n
j=0 y j .

For [0.5, 1]: Using the recursive scheme (2.18) with c = 0.5, b = 1 and β = −3
7 ,

we convert sub-problem (4.33) into the following recursive scheme

y0(x) = η,

y1(x) = (−2
5 )(x − 0.5)+

1∫

0.5
G(x, ξ)(y′

0(ξ)+ A0)dξ,

y j (x) =
1∫

0.5
G(x, ξ)(y′

j−1(ξ)+ A j−1)dξ, j = 1, 2, . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.36)

where G(x, ξ) is given by (4.7). By using (4.36) and (4.35), we have the solution
components as

y0(x) = η,

y1(x) = 3

14
− 57eη

64
+ 573e2η

640
− 3x

7
+ 2eηx − 9

5
e2ηx − eηx3 + eηx4

4
+ 3

10
e2ηx6,

...

Thus, the n-terms series solution is obtained as ψ(I I )
n (x, η) = ∑n

j=0 y j . In order to
determine value of η, we use the continuity condition for the flux, i.e.,

dψ(I )n (x, η)

dx

∣
∣
∣
∣
x=0.5

− dψ(I I )
n (x, η)

dx

∣
∣
∣
∣
x=0.5

= 0, n = 1, 2, . . . (4.37)

Then solving Eq. (4.37), the approximate values for η are obtained. From Table 9 we
can observe that the approximate value of η approaches to −1.8123149.... It is noted
that the actual value of η is y( 1

2 ) = ln
( 8

49

) = −1.81237875643079.... In Table 10
we list the numerical results of the maximum absolute error En, n = 1, 2, . . . 7.
Furthermore, we plot the exact y(x) and the approximate solutions ψn for n = 1, 2 in
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Table 10 Maximum absolute error of Example 4.5

n 1 2 3 4 5 6 7

En 3.265E−01 8.627E−02 1.523E−02 1.766E−03 3.382E−04 9.953E−05 3.637E−05

Fig. 5 Exact y and approximate ψn , n = 3, 4, 5 of Example 4.5

Figure 5. It can be seen from the figure that the approximate solution ψ5 converges to
the exact solution.

5 Conclusion

We have presented the ADM and Green’s function for solving nonlinear second-
order BVPs with Neumann boundary conditions. The proposed technique depends
upon decomposing the domain of the problem into two sub-domains and constructing
Green’s function before establishing the recursive scheme for the solution components.
Accuracy and efficiency of the ADM have been examined by solving five examples
of second-order Neumann BVPs. Unlike the finite difference, the cubic spline meth-
ods, and any other discretization methods, the proposed method does not require
any linearization or discretization of variables. Convergence analysis of the proposed
method has also been discussed. The combination of ADM and Green functions show
enhancement over existing techniques where we overcome the cumbersome work.
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